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Kernel Approximation on a Quantum Annealer
for Remote Sensing Regression Tasks

Edoardo Pasetto, Morris Riedel, Member, IEEE, Kristel Michielsen, and Gabriele Cavallaro, Senior Member, IEEE

Abstract—The increased development of quantum computing
hardware in recent years has led to increased interest in its
application to various areas. Finding effective ways to apply this
technology to real-world use-cases is a current area of research
in the Remote Sensing (RS) community. This paper proposes an
Adiabatic Quantum Kitchen Sinks (AQKS) kernel approximation
algorithm with parallel quantum annealing on the D-Wave
Advantage quantum annealer. The proposed implementation
is applied to Support Vector Regression (SVR) and Gaussian
Process Regression (GPR) algorithms. To evaluate its perfor-
mance, a regression problem related to estimating chlorophyll
concentration in water is considered. The proposed algorithm was
tested on two real-world datasets and its results were compared
with those obtained by a classical implementation of kernel-based
algorithms and a Random Kitchen Sinks (RKS) implementation.
On average, the parallel AQKS achieved comparable results
to the benchmark methods, indicating its potential for future
applications.

Index Terms—, Quantum Computing (QC), Quantum Anneal-
ing (QA), regression, Remote Sensing (RS), parallel quantum
annealing

I. INTRODUCTION

THE task of estimating biophysical quantities from RS
measurement data is a well-studied problem in the re-

search community, covering a range of applications such as
water chlorophyll concentration estimation [1], [2], [3], ozone
concentratin estimation [4] and crop yield prediction [5].
The task can be interpreted as an inverse modelling problem
whose objective is to find a relationship between acquired
measurements of some specific physical quantities and a value
of interest [6]. On a formal point of view the objective is to
determine a function y = f(x) : Rd → R, where x ∈ Rd

is the input feature vector containing the data of the optical
measurements and the scalar y ∈ R is the quantity of interest
to be determined. The learning of process of the function f(.)
is carried out by observing a training set of data observation,
i.e a set of N pairs of observation measurements vectors and
their corresponding target value {(xi, yi), i = 1, . . . , N}.
Regression tasks in RS have been studied by applying different
supervised learning algorithms and among the most popular
are SVR [7], [8], Kernel Ridge Regression (KRR) [9] and
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GPR [10]. A common feature of these methods is the usage
of a kernel function k(x,x′), which allows to calculate the
dot product between a non-linear map of the input vectors in a
transformed feature space taking as argument the original input
vectors, i.e. k(x,x′) = ϕ(x)Tϕ(x′), where ϕ(.) is a non-linear
feature map. One of the advantages of using kernel methods
comes from the so-called kernel trick: if in the mathematical
formulation of a learning algorithm feature vectors appear only
as dot products between them, it is possible to ”kernelize”
the algorithm by substituting such products with the kernel
function calculated on the same feature vectors [11], [12].
The main characteristic of this procedure is that it is not
necessary to know the non-linear feature mapping ϕ(.) nor
the transformed vectors themselves since the only information
needed can be obtained implicitly by the evaluation of the
kernel function. Kernel methods, however, tend to scale badly
as the size of the training set increases [13]. Starting from this
observation Rahimi et al. proposed the RKS kernel approx-
imation algorithm, which approximates the kernel function
by using randomized features [13], [14]. This procedure, also
known as Random Fourier Features, therefore does not employ
a kernel function but instead explicitly generates transformed
feature vectors through randomization.

Quantum Computing (QC)[15], [16] is a computational
model based upon the properties of quantum mechanics that
was theoretically proven to have the potential to outperform
classical computers in terms of computational complexity on
some specific tasks [17], [18]. However, the availability of a
reliable large-scale quantum computer might still be a distant
goal [19]. The growing interest towards the application of
different QC algorithms to enhance Machine Learning (ML)
frameworks laid the foundations for the development of the
research field of Quantum Machine Learning (QML) [20],
[21], [22], [23], [24]. In the context of RS, QML have been
applied to image classification through the usage of a hybrid
quantum-classical neural network whose quantum layer was
implemented with a parametrized quantum circuit [25], [26],
[27].

A QML-based implementation of the Random Fourier fea-
tures has been recently proposed with gate-based quantum
computing [28] and Quantum Annealing (QA) [29]. In the
QA-based implementation, also referred to as AQKS, data
are linearly encoded in the Hamiltonian of a quantum system
which is then evolved and the measurement value taken at the
end of the process is then used to generate the transformed
feature vectors that are then used to train a Support Vector
Machine (SVM) for binary classification tasks. In this work the
AQKS kernel approximation algorithm is applied to 2 different
kernel-based regression algorithms: SVR and GPR on 2 real
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RS datasets related to chlorophyll concentration estimation.
The obtained results are then compared with those obtained by
the corresponding traditional kernel-based versions and those
obtained by the same algorithm trained using the classical
RKS kernel approximation algorithm. The implementation of
the AQKS kernel approximation algorithm is done using a D-
Wave Advantage system quantum annealer, whereas the work
in [29] simulated the quantum system through trotterization.
Moreover, since the workflow of AQKS requires to solve
with the quantum annealer many problems of small size, the
concept of Parallel Quantum annealing [30] was used in order
to reduce the computational time during the learning process
by running multiple problem instances in the same annealing
cycle. This is possible because, if two or more problems are
independent they can be solved in the same annealing cycle
by solving the optimization problem obtained by summing
them together. For the sake of clarity in the notation the
algorithms implemented with a traditional kernel, the AQKS
kernel approximation and the RKS kernel approximation are
referred to as classical, quantum and RKS-based respectively.
Our contributions in this work can be summarized as follows:
implementation of AQKS on a real quantum annealing device,
application of such a scheme to regression problem with
2 different algorithms, integration of AQKS with parallel
quantum annealing to reduce the computational time and to
the best of our knowledge, first time application of such a
scheme to a real RS use-case.

II. QUANTUM ANNEALING AND QUBO PROBLEM
FORMULATION

To solve a problem with a quantum annealer it is necessary
to reformulate it as as a Quadratic Binary Unconstrained
Optimization (QUBO), which corresponds to the optimization
of the following energy function:

min
a1,...,aN

N∑
i=1

N∑
j=i+1

aiQijaj (1)

where ai ∈ {0, 1} and Q is an upper-triangular matrix
containing the coefficients of the problem that is referred to as
QUBO weight matrix. By defining a ∈ {0, 1}N ≜ [a1, . . . aN ]
it is possible to rewrite equation 1 in matrix product form as:

min
a

aTQa (2)

Alternatively, it is also possible to reformulate the problem
as a Ising spin model [31], which is a binary model whose
variables take value in the set {−1,−1}. For QA purposes
both problem formulations can be used.

III. KERNEL REGRESSION METHODS

In this section a description of the classical kernel-based
regression methods is now provided. In principle any symmet-
ric and positive semi-definite function k(x,x′) can be used as
kernel function [13]. In ML one of the most popular choice
for kernel function is the Radial Basis Function (RBF) kernel,
which has the property of depending only on the distance of
the inputs, i.e: k(x,x′) = k(||x − x′||). The formula of the

RBF is:
k(x,x′) = exp

(
||x− x′||

γ

)
(3)

The prediction function of the kernel-based algorithms used
in this work can be formulated as a weighted sum of kernel
function evaluations between the N training data points and
the input vector x:

f(x) =

N∑
i=1

αik(xi,x) + b (4)

where α1, . . . , αN are a set of scalar whose value is deter-
mined in the learning phase on the training set. The prediction
function is linear with respect to the kernel function evalua-
tions so the non-linear modelling in the original feature space
is achieved by applying a linear model in the transformed
feature space. In the following it will be denoted as X the
N × d design matrix in which each of its row corresponds
to a training sample, i.e X[i, :] = xi i = 1, . . . , N and as
y ∈ RN the corresponding target vector. Let us also define as
K the N ×N symmetric matrix, referred to as Gram matrix,
that stores the kernel function evaluation between every pair
of training sample xi and xj , i.e. Kij = Kji = k(xi,xj).

A. Support Vector Regression

The formulation of the SVR can be obtained by considering
the optimization of a regularized regression problem where the
considered loss function is a ϵ− insensitive loss function [32],
i.e. a function that gives an error only if the absolute difference
between the actual value and the predicted one is greater than
a value ϵ > 0 [11]:

Lϵ(f(x)− y) =

{
0, if |f(x)− y| < ϵ;

|f(x)− y|, otherwise
(5)

The loss function to be minimized is then:

C

N∑
n=1

Lϵ(f(xn)− yn) +
1

2
||w||2 (6)

In the formula C is a parameter that controls the overfitting
that by convention multiplies the error term in the equation
and therefore can be thought as a (inverse)-regularization
parameter [11]. The vector w is associated with the linear
coefficients in the transformed feature space.

It can be shown that the training of the SVR amounts to
the solving of the following constrained optimization problem
[11]:

L(ααα, α̂αα) =
1

2

N∑
n=1

N∑
m=1

(αn − α̂n)(αm − α̂m)k(xn,xm)+ (7)

− ϵ

N∑
n=1

(αn + α̂n) +

N∑
n=1

(αn − α̂n)yn

subject to the constraints:
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N∑
n=1

(αn − α̂n) = 0 (8a)

0 ≤ αn ≤ C (8b)

0 ≤ α̂n ≤ C (8c)

with respect to the variables αi and α̂i with i ∈ 1, . . . , N .
Once the values of α1, . . . , αN and α̂1, . . . , α̂N have been
determined a prediction on an input sample x can then be
made through the formula:

f(x) =

N∑
n=1

(αn − α̂n)k(x,xn) + b (9)

The value of b can be obtained from any point for which
0 < αn < C or 0 < α̂n < C through the formula:

b = tn − ϵ−
N∑

m=1

(αm − α̂m)k(xn,xm) (10)

It is preferable, however, to average over multiple data points
in order to get a more stable estimation [11].

B. Gaussian Process Regression

The regression approach of GPR is different from that of
SVR because it provides a output distribution of the target
y instead of a point estimation. Such probability distribution
is gaussian and therefore it is completely determined by the
value of the mean µ∗ and variance σ∗. In GPR the relationship
between the input vectors stored in X and the target values is
modelled as a sum between a gaussian multivariate function
N (0,K) and a independent noise component N (0, β−1IN ).
The Gram matrix is used to construct the covariance matrix
that is used to model the generation process of the training
set. By the properties of the gaussian function [11] the target
values assume the following probability distribution:

y ∼ N (0,K+ βIN ) (11)

To make a prediction on a unseen input x let us consider X∗

the N +1× d matrix obtained by vertically concatenating the
vector x to the matrix X, i.e. the last row of X∗ is equal to
the investigated input vector x while the other rows are equal
to the row of the design matrix X. The probability distribution
of the associated output vector y∗ ∈ RN+1, according to the
GPR framework is:

y∗ ∼ N (0,K∗ + βIN+1) (12)

The N +1×N +1 matrix K∗, is the Gram matrix calculated
on the design matrix X∗. In the prediction phase the first N
element of the vector y∗

i , i ∈ 1, . . . , N are fixed to the values
of the training samples yi. The last element of y∗, which is
the value of interest in the regression problem, will have a
probability distribution that depends on the value taken by the
first N entries of the vector and the kernel function evaluations
stored in the Gram Matrix K∗. Because of the property of
the gaussian multivariate function such conditional posterior
probability is still gaussian and its parameters are given by:

µ∗ = κT (K+ βIN )−1y (13)

σ∗ = k(x,x)− κT (K+ βIN )−1κ (14)

where µ∗ and σ∗ denote the mean and variance, respectively
and κ is defined as κ ∈ RN ≜ [k(xi,x), . . . , k(xN ,x)].
By defining α ∈ RN ≜ (K + βIN )−1y equation 13 can be
expressed in the form of equation 4 as: αTκ. Since in this
work we were interested in a point estimation of the target
values, the value of the mean was taken as prediction output
for the GPR.

IV. ADIABATIC QUANTUM KITCHEN SINKS

An implementation of RKS employing parametric quan-
tum circuits as random feature generators has been recently
proposed [28]. In such procedure data are encoded in the
parameters of quantum circuit, i.e the angle rotations of the
quantum gates that make up the circuit, and the randomization
in the feature generation process is obtained by carrying out
the measurement on the quantum state after the application of
the quantum circuit. They key aspect of this method is that
the data encoding is done by a linear function, therefore the
non-linear modelling achieved in the feature transformation
is attributable to quantum computation effects. In the QA-
based AQKS implementation data is encoded in a QUBO
problem that is then solved with quantum annealing. The
resulting solution after the Hamiltonian evolution is then used
to construct the transformed feature vectors. The encoding is
determined by E random matrices Ai, i = 1, . . . , E of size
q×d and E random vectors bi, i = 1, . . . , E of size q, where q
is a hyperparameter that controls the dimension of the resulting
QUBO problem and d is the dimension of the input feature
space. For each training sample xi, E random vectors he

i are
generated with the formula:

he
i = Aexi + be (15)

where the subscripts i and the superscripts e are used to denote
the random vector h generated from trainig sample i at episode
e. Each vector he

i is then encoded in a QUBO problem of size
q with the following rule:

Ql = he
i,l (16)

Ql,m = he
i,lh

e
i,m (17)

with l,m ∈ {1, . . . , q}. At the end of the annealing evolution
the vector ϕ(xi,Ae,be) of length q is obtained by performing
a measurement process and by normalizing by a factor 1/E.
The transformed feature vector zi of size E×q is then obtained
by concatenating the E vectors {ϕ(xi,Ae,be) e = 1, . . . , E}.
The encoding procedure is again linear and therefore any non-
linearity in the data transformation comes from the quantum
annealing process. The complete algorithmic workflow for
generating the transformed AQKS, defined by Noori et al. in
[29], is outlined in algorithm 1 for convenience:

The distribution p(A) is generally a multivariate gaus-
sian where each element of A follows a normal distribution



4

Algorithm 1 AQKS feature vectors generation
Input parameters: training samples {x1, . . . ,xN}, p(A) and
p(b) ,E,q
Output: transformed feature vectors z1, . . . , zN
sample A1, . . . ,AE and b1, . . . ,bE from p(A) and p(b)
for i = 1, . . . , N do

for e = 1, . . . , E do
apply encoding he

i = Aexi = be encode he
i in

a QUBO weight matrix obtain ϕ(xi,Ae,be) by
performing measurement and normalization after the
annealing evolution

end
Apply concatenation to the vectors ϕ(xi,Ae,be) to get
zi = [ϕ(x1,A1,b1), . . . , ϕ(xi,AE ,bE)]

end

N (µa, σa) while p(b) is a uniform distribution. In our ex-
periments, for each annealing cycle a total of 1000 readouts
were considered by setting the parameter num reads in the
sampling function from the D-Wave software accordingly. The
final value was obtained by doing a weighted average over
the obtained samples using as weighting factor the relative
occurrence of each vector.

The workflow of AQKS requires the solving of N × E
QUBO problems of size q to generate the transformed feature
vectors. The values of the parameters used in the experiments
in this work were E=50 and q=4 for the NOMAD dataset
and E=100 and q=2 for the SeaBAM dataset, whereas for
both cases µa=0, σa=0.01. The vector b was ignored in the
encoding phase. Since the value of q is generally small, the
the annealer will be used to solve many problems of small size
in which the vast majority of the available physical qubits will
remain unused. In this work therefore we integrate AQKS with
parallel quantum annealing to run multiple problem instances
together to reduce the computational time. The implementation
of AQKS with parallel quantum annealing will be referred to
as parallel AQKS.

V. PARALLEL QUANTUM ANNEALING

When solving a QUBO problem with a D-Wave quantum
annealer the problem graph must be minor-embedded [33] in
the Quantum Processing Unit (QPU). This is done because
the hardware topology, which is a Chimera topology for
the D-Wave 2000Q and a Pegasus topology for Advantage,
doesn’t provide a full connectivity on the hardware graph
and therefore it is often necessary to represent a logical
qubit with multiple physical qubits. During this process each
logical qubit, which corresponds to a binary variable in the
QUBO model, is mapped to a group of connected qubits,
which are referred to as a chain. The first step in the minor
embedding process is the construction of the problem graph
G(V,E), in which each of the nodes in V represent a binary
variable in the QUBO problem and and for each quadratic
term in the QUBO a weighted edge with weight equal to
the corresponding quadratic coefficient is added. The problem
graph is then minor-embedded in the graph defined by the
hardware topology. After that a subgraph of the quantum hard-
ware topology will be then assigned to the problem and the

solver will start the annealing procedure on the qubits of such
subgraph. In some cases, especially if the problem is of small
dimension, it will happen that many of the available qubits will
remain unused during the annealing process. Starting from this
observation, parallel quantum annealing [30] was proposed in
order to make better use of the available quantum hardware,
considering that two or more independent QUBO problem can
be solved together in the same annealing cycle. Let us in fact
consider two QUBO problems Q1 and Q2, of size m and n,
respectively. For the sake of convenience in the notation let us
also denote the variables of Q1 as {a1, . . . , am} ∈ {0, 1}m,
and those of Q2 as {am+1, . . . , am+n} ∈ {0, 1}n. Now
let us consider the QUBO problem Q∗ ≜ Q1 + Q2 whose
variables will then be a1, . . . , am+n ∈ {0, 1}m+n. It is easy
to verify from the problem definition that the minimum of
Q∗ is equal to the sum of the minimum of Q1 and Q2.
Moreover, the optimal solution of Q∗ will preserve the optimal
solutions of Q1 and Q2, i.e the first m variables of the optimal
solution of Q∗ will be equal to the optimal solution of Q1

whereas the remaining n variables will be equal to the optimal
solution of Q2. The problem graph related to Q∗, since there
are no edges between ai and aj with i ∈ {1, . . . ,m} and
j ∈ {m+1, . . . ,m+n}, will be composed by two independent
graphs that are identical to the problem graphs of Q1 and Q2.
This reasoning could be extended to more than two problems
thus setting the theoretical basis for solving multiple QUBO
problems together.

The structure of the encoding problem defined in section
IV is a fully connected graph of size q. Each of the N × E
problems that are needed to generate the feature vectors has
the same graph structure, therefore when solving together the
same number of problems the same embedding scheme can
be used. By solving multiple QUBO problems in parallel we
therefore managed to obtain the feature transformation for 20
samples in each annealing cycle. The complete workflow for
the proposed parallel implementation of AQKS is outlined in
algorithm 2.

In the pseudocode of algorithm 2 it was assumed that the
number of training sample N was a multiple of the number of
samples processed in each annealing cycle, samples per run.
If this is not the case, i.e N = p ∗ samples per run +
r,with p, r ∈ N and 0 < r < samples per run, the
algorithm will run with num iteration = p + 1: the first
p iterations will follow the procedure described by algorithm
2, while the last one will iterate the for loop over the variable
n over 1, . . . , r instead of 1, . . . , samples per run.

VI. EXPERIMENTAL VALIDATION

A. Datasets

The experimental validation in this work has been carried
out on 2 real RS dataset related to water chlorophyll concen-
tration. [34]

• SEABAM [35] (SeaWiFS Bio-optical Algorithm Mini-
Workshop) The first dataset used contains 919 in-situ
measurements of chlotophyll concentration in water taken
from several locations in U.S. and Europe. However, due
to some missing data value only 793 samples were used in
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Algorithm 2 Proposed implementation parallel AQKS imple-
mentation
Input: training samples {x1, . . . ,xN}, probability distribu-
tions p(A), p(b), E, q, number of samples to run in each
annealing cycle samples per run
sample A1, . . . ,AE and b1, . . . ,bE from p(A) and p(b),
respectively.
define num iterations ≜ N/samples per run
for i = 1, . . . , num iterations do

initialize Qi as an empty QUBO problem
for n = 1, . . . , samples per run do

define c ≜ samples per run ∗ (i− 1) + n
for e = 1, . . . , E do

calculate random vector he
c = Aexc + be

add to the QUBO Qi the vari-
ables aE∗q∗(n−1)+(e−1)∗q+1, . . . ,
aE∗q∗(n−1)+(e−1)∗q+q

set the linear coefficients for
{aE∗q∗(n−1)+(e−1)∗q+1, . . . ,
aE∗q∗(n−1)+(e−1)∗q+q} as he

c,1, . . . ,h
e
c,q ,

respectively
set the the quadratic coefficients
QE∗q∗(n−1)+(e−1)∗q+j,E∗q∗(n−1)+(e−1)∗q+k

as
he
c,jh

e
c,k for k, j ∈ {1, . . . , q}

end
end
Run the annealing evolution on the problem Qi

Perform the measurement process and average among the
different sample readouts provided by the annealer
Normalize the obtained vector z of size
samples per run ∗ E ∗ q vector by a factor 1/E
Obtain the transformed feature vectors for samples (i−1)∗
samples per run+1, . . . , (i−1)∗ samples per run+
samples per run
by considering the elements of z {E∗(l−1)∗q+1, . . . , E∗
l ∗ q } with l ∈ {1, . . . , samples per run}

end

the experiments. The measurements were carried out with
the Sea-viewing Wide Field-of- view Sensor (SeaWiFS)
at 5 different wavelengths (412, 443, 490, 510 and 555
nm) and the chlorophyll concentration takes values in the
range 0.019 and 32.787 mg/m3.

• NOMAD [36] (NASA bio-Optical Marine Algorithm
Data set) The second dataset used is also an in-situ
dataset and contains several bioptical data information
such as surface irradiances, water-leaving radiances, dif-
fuse downwelling attenuation coefficients and chlorophyll
concentration values. In this work data taken at 5 different
wavelengths (411, 443, 489, 510, and 555 nm) were used
as input features vectors for the regression algorithms.
Specifically, for each spectral band the corresponding
feature value was taken as the ratio between the corre-
sponding spectral water-leaving radiance and the spectral
surface irradiance [2]. For the experimental part of this
work a total of 1210 measurements were used and the

chlorophyll concentration value ranged between 0.017
and 70.21 mg/m3

For the training phase in both datasets the values of both
the feature vector and the target value were converted to the
logarithmic domain. The reason for this is that the values of
the bio-physical quantities were assumed to be log-normally
distributed [37].

B. Implementation details

For each dataset the 2 regression methods (SVR, GPR)
implemented with the parallel AQKS kernel approximation
were tested on 10 different randomly sampled training and
test sets of size 200 each. On each of these run a classical
implementation of the regression algorithm using a RBF kernel
and a RKS kernel approximation were tested and their results
in terms of R2 score and Mean Squared Error (MSE) were
compared as a benchmark. The results achieved in terms of
R2 score and MSE by the 3 different kernel implementation
were then compared.

In each run the hyperparameters of the regression algorithms
were tuned by running a exhaustive grid search defined over
a discrete hyperparameter space on a 5-fold validation on the
training set. Specifically, the training set has been divided in 5
different subsets(folds) and each hyperparameter configuration
was tested on each fold after being trained on the remaining
4 other. The configuration that achieved the highest average
R2 score over the 5 different folds was selected. Since the
parameters of parallel AQKS kernel approximation were not
optimized empirically because of the computational burden, it
was not performed an optimization of the kernel parameter γ
for the classical and RKS-based algorithm. Such value was
set to 1 for the SVR and 2 for the GPR in the classical
case, whereas it was set to 1 for both SVR and GPR in the
RKS implementation. The number of components in the RKS
algorithm was set to 50. All the classical algorithms have been
implemented using the python library scikit-learn [38]. The
hyperparameter spaces for the learning algorithms were:

• SVR: C : [2−8, 2−7, 2−6, 2−5, 2−4, 2−32−2, 2−1, 1,
2, 22, 23, 24, 25, 26, 27, 28], ϵ : [10−3, 10−2, 10−1]

• GPR : noise parameter β:
[10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2]

As indicated in section VI-A the training phase has been
conducted by considering the logarithm values of both the
input vector and the target value. The trained prediction func-
tion then provided a target value estimation in the logarithmic
domain. For the evaluation of the chosen performance metrics
two different setting were considered: in the first one, the
comparison between the predicted and the actual values was
carried out by comparing the value provided by the prediction
function and the logarithm of the target value, whereas in the
second setting the evaluation was conducted by considering the
original target value and the prediction value in the original
domain (obtained by exponentiation). In the following these 2
settings will be referred to as logarithm setting and original
setting, respectively.



6

VII. RESULTS

The results on the NOMAD dataset in the logarithm and
original setting are reported in tables I and II, respectively.
Tables III and IV show the results for the SEABAM dataset
(logarithm and original setting, respectively). In the logarithm
domain the 3 kernel implementations performed similarly
in terms of R2 score and MSE on both datasets with the
classical GPR implementation obtaining sligthly better results
overall. Interesting insights can be considered by analizing
the results in the original domain: for the NOMAD dataset
the parallel AQKS implementation achieved the best average
results on both R2 score and MSE. In the SEABAM dataset
the situation was more diverse: the classical SVR imple-
mentation achieved the best R2 score, whereas the classical
GPR obtained the worst performances on the same evaluation
metric. The parallel AQKS GPR performed slightly better
than RKS implementation while for the SVR the latter kernel
approximation method performed slightly better. Regarding
the MSE the results were also similar with the classical SVR
and GPR obtaining the best and worst results, respectively.
It is also worth noting that the proposed parallel AQKS
implementation never obtained a negative value for the R2
score across the various experimental runs, while the RKS-
based implementation obtained a negative score once with
GPR algorithm (experimental run 9 on the SEABAM in the
original setting) and the classical GPR twice (experimental run
7 for the SEABAM and experimental run 8 for the NOMAD,
both in the original setting). Another interesting fact can be
observed by analyzing the best R2 score achieved across
the various experimental runs. In the original setting for the
SEABAM dataset both the RKS-based and classical algorithm
always obtained a higher best R2 across the different runs with
respect to the AQKS even when the AQKS achieved a higher
average score. This fact might indicate a better robustness
of the AQKS in terms of generalization with respect to new
dataset sampling, however further research is needed to verify
this hypothesis.

VIII. CONCLUSIONS

The objective of this work was to develop a AQKS kernel
approximation implementation on a quantum annealer using
parallel quantum annealing for regression applications. The
choice of using a parallel implementation was motivated by
the high number of QUBO problems that are needed in the
workflow. The proposed implementation managed to achieve
results comparable to those obtained by classical kernel meth-
ods and the traditional RKS kernel approximation algorithm,
which could be indicative of its potential. The maximum
number of samples obtained on each annealing cycle, given
the number of epochs E and the number of qubits q, is
limited by the size of the quantum hardware. In our work
we managed to obtain 20 transformed feature vectors in each
annealing cycle, which makes the process unfeasible for large
datsets. The problem graph for the parallel annealing, since is
composed of many independent smaller subgraphs, is sparsely
connected and therefore might scale well with a increased
availability of physical qubits in future quantum annealing

hardware. Further research could also be conducted to improve
upon the proposed implementation. For instance, the samples
that are selected on each annealing cycle were chosen in a
sequential approach based on their sample index in the dataset,
further research could investigate a way to select the samples
to be considered in the same annealing cycle to increase the
performances. The code associated with this work can be
found at this GitHub repositorya
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TABLE I
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE NOMAD DATASET. THE EXPERIMENTAL

RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD
FONT

R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.8547 0.8464 0.8661 0.8326 0.8889 0.9171 0.4041 0.4271 0.3724 0.4655 0.3089 0.2306
2 0.8467 0.8653 0.8556 0.9031 0.8666 0.8966 0.4747 0.4171 0.447 0.3001 0.4131 0.3202
3 0.8522 0.8305 0.865 0.8488 0.8512 0.8774 0.3625 0.4159 0.3312 0.371 0.3651 0.3009
4 0.8351 0.8157 0.8628 0.845 0.8373 0.8282 0.4019 0.4489 0.3343 0.3776 0.3964 0.4185
5 0.8183 0.8362 0.8278 0.834 0.86 0.8782 0.4801 0.4328 0.455 0.4387 0.3699 0.3218
6 0.841 0.8319 0.8296 0.8181 0.8331 0.8703 0.3978 0.4208 0.4263 0.4552 0.4176 0.3245
7 0.8752 0.8642 0.8594 0.8703 0.8503 0.8785 0.3892 0.4235 0.4385 0.4045 0.4671 0.3789
8 0.8496 0.8676 0.8668 0.8863 0.8852 0.8958 0.3942 0.347 0.3492 0.298 0.301 0.2731
9 0.8214 0.8388 0.8421 0.8718 0.844 0.8729 0.4865 0.439 0.4302 0.3493 0.4251 0.3462
10 0.8519 0.8605 0.8646 0.8316 0.8709 0.8904 0.4182 0.394 0.3824 0.4755 0.3646 0.3095

Average 0.84461 0.84571 0.85398 0.85416 0.85875 0.88054 0.42092 0.41661 0.39665 0.39354 0.38288 0.32242
Standard deviation 0.0158 0.017 0.0144 0.0261 0.0181 0.022 0.0412 0.0271 0.0457 0.062 0.0492 0.0495

TABLE II
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE NOMAD DATASET.THE EXPERIMENTAL RUNS
IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD FONT

R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.4694 0.573 0.3067 0.3723 0.3445 0.7877 29.7181 23.917 38.8359 35.1613 36.7163 11.8921
2 0.3639 0.4158 0.2223 0.4802 0.3065 0.4924 43.6422 40.0798 53.3583 35.6625 47.5796 34.8237
3 0.5114 0.6572 0.5939 0.6234 0.4595 0.6185 12.4689 8.74798 10.3644 9.6101 13.7923 9.7345
4 0.4678 0.484 0.4515 0.5191 0.3411 0.1149 6.18735 5.99895 6.3763 5.5906 7.6599 10.2898
5 0.5856 0.6621 0.3673 0.2915 0.3698 0.5653 21.9323 17.8812 33.4848 37.4971 33.3539 23.0084
6 0.5017 0.5769 0.413 0.4977 0.3062 0.662 15.7916 13.4079 18.6024 15.9181 21.9866 10.7112
7 0.6584 0.7147 0.4417 0.5533 0.3103 0.6537 20.0019 16.7071 32.6923 26.16 40.3864 20.2803
8 0.65 0.6482 0.5827 0.731 0.6066 -0.0895 14.9709 15.0517 17.8522 11.5096 16.8273 46.6078
9 0.2984 0.4916 0.3528 0.3116 0.1953 0.3427 36.9161 26.7502 34.0534 36.2232 42.3389 34.5869
10 0.5722 0.6509 0.5917 0.5946 0.6025 0.7002 20.7195 16.9072 19.7742 19.6351 19.2548 14.5187

Average 0.50788 0.58744 0.43236 0.49747 0.38423 0.48479 22.2349 18.5449 26.5394 23.2968 27.9896 21.6453
Standard deviation 0.1099 0.0917 0.1206 0.1328 0.1264 0.2663 10.8828 9.265 13.6581 11.7399 13.0387 12.2649

TABLE III
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE SEABAM DATASET. THE EXPERIMENTAL

RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD
FONT

R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.8984 0.8887 0.9091 0.9034 0.912 0.9131 0.1987 0.2178 0.1777 0.189 0.1721 0.17
2 0.9039 0.8942 0.91 0.9107 0.9172 0.9249 0.2188 0.2408 0.2049 0.2033 0.1886 0.171
3 0.888 0.8953 0.8849 0.8877 0.8901 0.8967 0.2575 0.2409 0.2648 0.2582 0.2527 0.2376
4 0.8975 0.8922 0.8732 0.8346 0.8462 0.8594 0.2184 0.2296 0.2701 0.3522 0.3275 0.2994
5 0.8788 0.8818 0.8429 0.8163 0.8782 0.8989 0.2488 0.2426 0.3225 0.3771 0.2501 0.2076
6 0.888 0.8857 0.8826 0.8986 0.9204 0.9227 0.2289 0.2336 0.2399 0.2072 0.1627 0.158
7 0.8744 0.8677 0.8858 0.888 0.8897 0.8861 0.2367 0.2493 0.2151 0.211 0.2079 0.2146
8 0.8903 0.8775 0.8982 0.898 0.9065 0.9082 0.2062 0.2302 0.1914 0.1917 0.1758 0.1726
9 0.8551 0.8918 0.9019 0.8244 0.8974 0.8958 0.3369 0.2516 0.2281 0.4083 0.2385 0.2423
10 0.8829 0.8676 0.877 0.8653 0.8403 0.8787 0.2453 0.2773 0.2578 0.2823 0.3347 0.2542

Average 0.88573 0.88425 0.88656 0.8727 0.8898 0.89845 0.23962 0.24137 0.23723 0.26803 0.23106 0.21273
Standard deviation 0.0134 0.0098 0.019 0.0334 0.0265 0.0192 0.037 0.0153 0.041 0.0788 0.0587 0.0435
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TABLE IV
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE SEABAM DATASET. THE EXPERIMENTAL

RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD
FONT

R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.6114 0.5644 0.8979 0.6583 0.7952 0.7682 2.54541 2.85357 0.6687 2.2384 1.34169 1.51868
2 0.412 0.4377 0.6727 0.8462 0.7979 0.8619 6.5645 6.2784 3.6544 1.7172 2.25637 1.54226
3 0.4354 0.5463 0.3898 0.4376 0.4121 0.4186 6.29623 5.05951 6.8051 6.2719 6.55649 6.4839
4 0.4112 0.3947 0.2751 0.171 0.1877 0.1918 6.69937 6.88736 8.2478 9.4322 9.2416 9.19557
5 0.522 0.5035 0.4217 0.5436 0.6415 0.7067 3.09488 3.21482 3.7441 2.9551 2.32111 1.89872
6 0.3853 0.4166 0.3496 0.4317 0.5207 0.6046 8.14113 7.72548 8.6132 7.5255 6.34713 5.23573
7 0.2644 0.288 0.343 0.5419 0.3899 -2.1175 8.40368 8.13365 7.505 5.2329 6.96937 35.6133
8 0.5801 0.6298 0.7599 0.6463 0.7777 0.6915 1.90872 1.68274 1.0914 1.608 1.01051 1.40248
9 0.5479 0.542 0.5044 -0.3097 0.5025 0.6241 3.95809 4.01001 4.3391 11.4678 4.35617 3.29168
10 0.6027 0.6699 0.6949 0.6659 0.709 0.4923 1.67502 1.3919 1.2862 1.4084 1.22674 2.14073

Average 0.47724 0.49929 0.5309 0.46328 0.57342 0.32422 4.9287 4.72374 4.5955 4.98574 4.16272 6.83231
Standard deviation 0.1074 0.1098 0.2001 0.3093 0.1951 0.8338 2.4448 2.3341 2.8837 3.4134 2.7884 9.9055
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university. His main research interest is the applica-
tion of hybrid quantum-classical Machine Learning
frameworks to RS applications.

Morris Riedel (Member, IEEE) received his PhD
from the Karlsruhe Institute of Technology (KIT)
and worked in data-intensive parallel and distributed
systems since 2004. He is currently a Full Professor
of High-Performance Computing with an empha-
sis on Parallel and Scalable Machine Learning at
the School of Natural Sciences and Engineering of
the University of Iceland. Since 2004, Prof. Dr. -
Ing. Morris Riedel held various positions at the
Juelich Supercomputing Centre of Forschungszen-
trum Juelich in Germany. In addition, he is the Head

of the joint High Productivity Data Processing research group between the
Juelich Supercomputing Centre and the University of Iceland. Since 2020,
he is also the EuroHPC Joint Undertaking governing board member for
Iceland. His research interests include high-performance computing, remote
sensing applications, medicine and health applications, pattern recognition,
image processing, and data sciences, and he has authored extensively in those
fields. Prof. Dr. – Ing. Morris Riedel online YouTube and university lectures
include High-Performance Computing – Advanced Scientific Computing,
Cloud Computing and Big Data – Parallel and Scalable Machine and Deep
Learning, as well as Statistical Data Mining. In addition, he has performed
numerous hands-on training events in parallel and scalable machine and deep
learning techniques on cutting-edge HPC systems.

Kristel Michielsen received her PhD from the
University of Groningen, the Netherlands, for work
on the simulation of strongly correlated electron
systems in 1993. Since 2009 she is group leader
of the research group Quantum Information Pro-
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Forschungszentrum Jülich (Germany) and Profes-
sor of Quantum Information Processing at RWTH
Aachen University (Germany). Kristel Michielsen
and her group have ample experience in performing
large-scale simulations of quantum systems. With

her group and a team of international collaborators, she set the world record in
simulating a quantum computer with 48 qubits. In 2019, she participated in a
research collaboration that proved Google’s quantum supremacy. She is lead-
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