Kernel Approximation on a Quantum Annealer
for Remote Sensing Regression Tasks

Edoardo Pasetto, Morris Riedel, Member, IEEE, Kristel Michielsen, and Gabriele Cavallaro, Senior Member, IEEE

Abstract—The increased development of quantum computing
hardware in recent years has led to increased interest in its
application to various areas. Finding effective ways to apply this
technology to real-world use-cases is a current area of research
in the Remote Sensing (RS) community. This paper proposes an
Adiabatic Quantum Kitchen Sinks (AQKS) kernel approximation
algorithm with parallel quantum annealing on the D-Wave
Advantage quantum annealer. The proposed implementation
is applied to Support Vector Regression (SVR) and Gaussian
Process Regression (GPR) algorithms. To evaluate its perfor-
mance, a regression problem related to estimating chlorophyll
concentration in water is considered. The proposed algorithm was
tested on two real-world datasets and its results were compared
with those obtained by a classical implementation of kernel-based
algorithms and a Random Kitchen Sinks (RKS) implementation.
On average, the parallel AQKS achieved comparable results
to the benchmark methods, indicating its potential for future
applications.

Index Terms—, Quantum Computing (QC), Quantum Anneal-
ing (QA), regression, Remote Sensing (RS), parallel quantum
annealing

I. INTRODUCTION

HE task of estimating biophysical quantities from RS

measurement data is a well-studied problem in the re-
search community, covering a range of applications such as
water chlorophyll concentration estimation [1], [2], [3], ozone
concentratin estimation [4] and crop yield prediction [5].
The task can be interpreted as an inverse modelling problem
whose objective is to find a relationship between acquired
measurements of some specific physical quantities and a value
of interest [6]. On a formal point of view the objective is to
determine a function y = f(x) : R — R, where x € RY
is the input feature vector containing the data of the optical
measurements and the scalar y € R is the quantity of interest
to be determined. The learning of process of the function f(.)
is carried out by observing a training set of data observation,
i.e a set of N pairs of observation measurements vectors and
their corresponding target value {(x;,v:), ¢ = 1,...,N}.
Regression tasks in RS have been studied by applying different
supervised learning algorithms and among the most popular
are SVR [7], [8], Kernel Ridge Regression (KRR) [9] and

Edoardo Pasetto and Kristel Michielsen are with the Jilich Super-

computing Centre, Wilhelm-Johnen Strale 52428 Jiilich, Germany, with
the RWTH Aachen University, D-52056 Aachen, Germany, and with
the AIDAS, 52425 IJilich, Germany (e-mail: e.pasetto@fz-juelich.de,
k.michielsen @fz-juelich.de).
Morris Riedel and Gabriele Cavallaro are with the University of Iceland, 107
Reykjavik, Iceland, with the Jiilich Supercomputing Centre, Wilhelm-Johnen
Stralle 52428 Jiilich, Germany and with the AIDAS, 52425 Jiilich, Germany
(e-mail: morris@hi.is, g.cavallaro@fz-juelich.de).

GPR [10]. A common feature of these methods is the usage
of a kernel function k(x,x’), which allows to calculate the
dot product between a non-linear map of the input vectors in a
transformed feature space taking as argument the original input
vectors, i.e. k(x,x’) = ¢(x)T¢(x’), where ¢(.) is a non-linear
feature map. One of the advantages of using kernel methods
comes from the so-called kernel trick: if in the mathematical
formulation of a learning algorithm feature vectors appear only
as dot products between them, it is possible to “kernelize”
the algorithm by substituting such products with the kernel
function calculated on the same feature vectors [11], [12].
The main characteristic of this procedure is that it is not
necessary to know the non-linear feature mapping ¢(.) nor
the transformed vectors themselves since the only information
needed can be obtained implicitly by the evaluation of the
kernel function. Kernel methods, however, tend to scale badly
as the size of the training set increases [13]. Starting from this
observation Rahimi et al. proposed the RKS kernel approx-
imation algorithm, which approximates the kernel function
by using randomized features [13], [14]. This procedure, also
known as Random Fourier Features, therefore does not employ
a kernel function but instead explicitly generates transformed
feature vectors through randomization.

Quantum Computing (QC)[15], [16] is a computational
model based upon the properties of quantum mechanics that
was theoretically proven to have the potential to outperform
classical computers in terms of computational complexity on
some specific tasks [17], [18]. However, the availability of a
reliable large-scale quantum computer might still be a distant
goal [19]. The growing interest towards the application of
different QC algorithms to enhance Machine Learning (ML)
frameworks laid the foundations for the development of the
research field of Quantum Machine Learning (QML) [20],
[211, [22], [23], [24]. In the context of RS, QML have been
applied to image classification through the usage of a hybrid
quantum-classical neural network whose quantum layer was
implemented with a parametrized quantum circuit [25], [26],
[27].

A QML-based implementation of the Random Fourier fea-
tures has been recently proposed with gate-based quantum
computing [28] and Quantum Annealing (QA) [29]. In the
QA-based implementation, also referred to as AQKS, data
are linearly encoded in the Hamiltonian of a quantum system
which is then evolved and the measurement value taken at the
end of the process is then used to generate the transformed
feature vectors that are then used to train a Support Vector
Machine (SVM) for binary classification tasks. In this work the
AQKS kernel approximation algorithm is applied to 2 different
kernel-based regression algorithms: SVR and GPR on 2 real

RS datasets related to chlorophyll concentration estimation.
The obtained results are then compared with those obtained by
the corresponding traditional kernel-based versions and those
obtained by the same algorithm trained using the classical
RKS kernel approximation algorithm. The implementation of
the AQKS kernel approximation algorithm is done using a D-
Wave Advantage system quantum annealer, whereas the work
in [29] simulated the quantum system through trotterization.
Moreover, since the workflow of AQKS requires to solve
with the quantum annealer many problems of small size, the
concept of Parallel Quantum annealing [30] was used in order
to reduce the computational time during the learning process
by running multiple problem instances in the same annealing
cycle. This is possible because, if two or more problems are
independent they can be solved in the same annealing cycle
by solving the optimization problem obtained by summing
them together. For the sake of clarity in the notation the
algorithms implemented with a traditional kernel, the AQKS
kernel approximation and the RKS kernel approximation are
referred to as classical, quantum and RKS-based respectively.
Our contributions in this work can be summarized as follows:
implementation of AQKS on a real quantum annealing device,
application of such a scheme to regression problem with
2 different algorithms, integration of AQKS with parallel
quantum annealing to reduce the computational time and to
the best of our knowledge, first time application of such a
scheme to a real RS use-case.

II. QUANTUM ANNEALING AND QUBO PROBLEM
FORMULATION

To solve a problem with a quantum annealer it is necessary
to reformulate it as as a Quadratic Binary Unconstrained
Optimization (QUBO), which corresponds to the optimization
of the following energy function:

N N
min Z Z aiQijaj (1)
QY yeeny anN

i=1 j=i+1

where a; € {0,1} and @ is an upper-triangular matrix
containing the coefficients of the problem that is referred to as
QUBO weight matrix. By defining a € {0,1} £ [ay,...an]
it is possible to rewrite equation 1 in matrix product form as:

min a’ Qa 2)

Alternatively, it is also possible to reformulate the problem
as a Ising spin model [31], which is a binary model whose
variables take value in the set {—1,—1}. For QA purposes
both problem formulations can be used.

IIT. KERNEL REGRESSION METHODS

In this section a description of the classical kernel-based
regression methods is now provided. In principle any symmet-
ric and positive semi-definite function k(x,x’) can be used as
kernel function [13]. In ML one of the most popular choice
for kernel function is the Radial Basis Function (RBF) kernel,
which has the property of depending only on the distance of
the inputs, i.e: k(x,x’) = k(||x — x'||). The formula of the

RBF is: ,
k(x,x') = exp(”x ;X |) 3)

The prediction function of the kernel-based algorithms used
in this work can be formulated as a weighted sum of kernel
function evaluations between the N training data points and
the input vector x:

N
F(x) = aik(xi,x) + b 4)
i=1
where «q,...,anN are a set of scalar whose value is deter-
mined in the learning phase on the training set. The prediction
function is linear with respect to the kernel function evalua-
tions so the non-linear modelling in the original feature space
is achieved by applying a linear model in the transformed
feature space. In the following it will be denoted as X the
N x d design matrix in which each of its row corresponds
to a training sample, i.e X[i,:] = x; ¢ = 1,...,N and as
y € R the corresponding target vector. Let us also define as
K the N x N symmetric matrix, referred to as Gram matrix,
that stores the kernel function evaluation between every pair
of training sample x; and x;, i.e. K;; = Kj; = k(x;,%;).

A. Support Vector Regression

The formulation of the SVR can be obtained by considering
the optimization of a regularized regression problem where the
considered loss function is a € — insensitive loss function [32],
i.e. a function that gives an error only if the absolute difference
between the actual value and the predicted one is greater than
a value ¢ > 0 [11]:

0) lf X)— < 6;
Lo(f(x)—y) = 1£G<) =9l)
|f(x) —y|, otherwise
The loss function to be minimized is then:
al 1
Czce(f(xn)_yn)‘f‘i”WHQ (6)
n=1

In the formula C' is a parameter that controls the overfitting
that by convention multiplies the error term in the equation
and therefore can be thought as a (inverse)-regularization
parameter [11]. The vector w is associated with the linear
coefficients in the transformed feature space.

It can be shown that the training of the SVR amounts to
the solving of the following constrained optimization problem
[11]:

n=1m=1
N N
— € Z(an + an) + Z(an - dn)yn
n=1 n=1

subject to the constraints:

D (an —dy) =0 (8a)
n=1
0<a,<C (8b)
0<a, <C (8c)
with respect to the variables «; and ¢; with¢ € 1,... N.

Once the values of aq,...,any and &q,...,4&yN have been
determined a prediction on an input sample x can then be
made through the formula:

N
Fx) = (an — dn)k(x, %) + b 9)
n=1
The value of b can be obtained from any point for which
0<a, <Cor0<d, < C through the formula:

N
b=tn—e— > (0m — m)k(Xn, Xpm) (10)
m=1
It is preferable, however, to average over multiple data points
in order to get a more stable estimation [11].

B. Gaussian Process Regression

The regression approach of GPR is different from that of
SVR because it provides a output distribution of the target
y instead of a point estimation. Such probability distribution
is gaussian and therefore it is completely determined by the
value of the mean p* and variance o*. In GPR the relationship
between the input vectors stored in X and the target values is
modelled as a sum between a gaussian multivariate function
N(0,K) and a independent noise component N'(0, 3~ 11y).
The Gram matrix is used to construct the covariance matrix
that is used to model the generation process of the training
set. By the properties of the gaussian function [11] the target
values assume the following probability distribution:

y ~N(0,K + SlLy) Y

To make a prediction on a unseen input x let us consider X*
the N + 1 x d matrix obtained by vertically concatenating the
vector x to the matrix X, i.e. the last row of X* is equal to
the investigated input vector x while the other rows are equal
to the row of the design matrix X. The probability distribution
of the associated output vector y* € RVY*! according to the
GPR framework is:

Yy ~N(0,K* + fIni1)

The N +1 x N + 1 matrix K*, is the Gram matrix calculated
on the design matrix X*. In the prediction phase the first N
element of the vector y;, ¢« € 1,..., N are fixed to the values
of the training samples y;. The last element of y*, which is
the value of interest in the regression problem, will have a
probability distribution that depends on the value taken by the
first N entries of the vector and the kernel function evaluations
stored in the Gram Matrix K*. Because of the property of
the gaussian multivariate function such conditional posterior
probability is still gaussian and its parameters are given by:

12)

pt=rk"(K+BIy) "y (13)

o =k(x,x) — kT(K + BIn) 'k (14)

where p* and o* denote the mean and variance, respectively
and r is defined as Kk € RN 2 [k(x;,x),..., k(XN,X)].
By defining a € RY £ (K + SIy) "'y equation 13 can be
expressed in the form of equation 4 as: a’'k. Since in this
work we were interested in a point estimation of the target
values, the value of the mean was taken as prediction output
for the GPR.

IV. ADIABATIC QUANTUM KITCHEN SINKS

An implementation of RKS employing parametric quan-
tum circuits as random feature generators has been recently
proposed [28]. In such procedure data are encoded in the
parameters of quantum circuit, i.e the angle rotations of the
quantum gates that make up the circuit, and the randomization
in the feature generation process is obtained by carrying out
the measurement on the quantum state after the application of
the quantum circuit. They key aspect of this method is that
the data encoding is done by a linear function, therefore the
non-linear modelling achieved in the feature transformation
is attributable to quantum computation effects. In the QA-
based AQKS implementation data is encoded in a QUBO
problem that is then solved with quantum annealing. The
resulting solution after the Hamiltonian evolution is then used
to construct the transformed feature vectors. The encoding is
determined by E random matrices A;, i = 1,..., FE of size
g x d and E random vectors b;, 7 = 1, ..., FE of size q, where q
is a hyperparameter that controls the dimension of the resulting
QUBO problem and d is the dimension of the input feature
space. For each training sample x;, E random vectors h{ are
generated with the formula:

h¢ = A.x; + b, (15)

where the subscripts i and the superscripts e are used to denote
the random vector h generated from trainig sample i at episode
e. Each vector hy is then encoded in a QUBO problem of size
q with the following rule:

Q1 =hj,
€ e
Ql,m = hi,lhi,m

with [,m € {1,...,q}. At the end of the annealing evolution
the vector ¢(x;, A, b.) of length q is obtained by performing
a measurement process and by normalizing by a factor 1/E.
The transformed feature vector z; of size E' X q is then obtained
by concatenating the E vectors {¢(x;, Ac,bc.) e=1,...,E}.
The encoding procedure is again linear and therefore any non-
linearity in the data transformation comes from the quantum
annealing process. The complete algorithmic workflow for
generating the transformed AQKS, defined by Noori et al. in
[29], is outlined in algorithm 1 for convenience:

The distribution p(A) is generally a multivariate gaus-
sian where each element of A follows a normal distribution

(16)
a7

Algorithm 1 AQKS feature vectors generation
Input parameters: training samples {x1,...,Xy}, p(A) and

p(b) .E.q
Output: transformed feature vectors zi,...,2zy
sample A1,...,Ar and by,..., by from p(A) and p(b)

fori=1,...,N do

fore=1,...,FE do
apply encoding hf = A.x; = b. encode hf in
a QUBO weight matrix obtain ¢(x;, Ae,be) by
performing measurement and normalization after the
annealing evolution

end

Apply concatenation to the vectors ¢(x;, A.,b.) to get

Z;, = [¢(X17A17b1)7 .. 7¢(X7,7AE'7bE)]

end

N (pa,0o) while p(b) is a uniform distribution. In our ex-
periments, for each annealing cycle a total of 1000 readouts
were considered by setting the parameter num_reads in the
sampling function from the D-Wave software accordingly. The
final value was obtained by doing a weighted average over
the obtained samples using as weighting factor the relative
occurrence of each vector.

The workflow of AQKS requires the solving of N x E
QUBO problems of size q to generate the transformed feature
vectors. The values of the parameters used in the experiments
in this work were E=50 and q=4 for the NOMAD dataset
and E=100 and q=2 for the SeaBAM dataset, whereas for
both cases (=0, 0,=0.01. The vector b was ignored in the
encoding phase. Since the value of q is generally small, the
the annealer will be used to solve many problems of small size
in which the vast majority of the available physical qubits will
remain unused. In this work therefore we integrate AQKS with
parallel quantum annealing to run multiple problem instances
together to reduce the computational time. The implementation
of AQKS with parallel quantum annealing will be referred to
as parallel AQKS.

V. PARALLEL QUANTUM ANNEALING

When solving a QUBO problem with a D-Wave quantum
annealer the problem graph must be minor-embedded [33] in
the Quantum Processing Unit (QPU). This is done because
the hardware topology, which is a Chimera topology for
the D-Wave 2000Q and a Pegasus topology for Advantage,
doesn’t provide a full connectivity on the hardware graph
and therefore it is often necessary to represent a logical
qubit with multiple physical qubits. During this process each
logical qubit, which corresponds to a binary variable in the
QUBO model, is mapped to a group of connected qubits,
which are referred to as a chain. The first step in the minor
embedding process is the construction of the problem graph
G(V, E), in which each of the nodes in V represent a binary
variable in the QUBO problem and and for each quadratic
term in the QUBO a weighted edge with weight equal to
the corresponding quadratic coefficient is added. The problem
graph is then minor-embedded in the graph defined by the
hardware topology. After that a subgraph of the quantum hard-
ware topology will be then assigned to the problem and the

solver will start the annealing procedure on the qubits of such
subgraph. In some cases, especially if the problem is of small
dimension, it will happen that many of the available qubits will
remain unused during the annealing process. Starting from this
observation, parallel quantum annealing [30] was proposed in
order to make better use of the available quantum hardware,
considering that two or more independent QUBO problem can
be solved together in the same annealing cycle. Let us in fact
consider two QUBO problems Q! and ()2, of size m and n,
respectively. For the sake of convenience in the notation let us
also denote the variables of Q! as {ai,...,an} € {0,1}™,
and those of Q2 as {am+1,---,amin}t € {0,1}". Now
let us consider the QUBO problem Q* £ Q' 4+ Q2 whose
variables will then be ai,...,amin € {0,1}™T It is easy
to verify from the problem definition that the minimum of
Q* is equal to the sum of the minimum of Q' and Q2.
Moreover, the optimal solution of Q* will preserve the optimal
solutions of Q! and @2, i.e the first m variables of the optimal
solution of Q* will be equal to the optimal solution of Q!
whereas the remaining n variables will be equal to the optimal
solution of Q2. The problem graph related to Q*, since there
are no edges between a; and a; with ¢ € {1,...,m} and
j € {m+1,...,m+n}, will be composed by two independent
graphs that are identical to the problem graphs of Q' and Q2.
This reasoning could be extended to more than two problems
thus setting the theoretical basis for solving multiple QUBO
problems together.

The structure of the encoding problem defined in section
IV is a fully connected graph of size q. Each of the N x E
problems that are needed to generate the feature vectors has
the same graph structure, therefore when solving together the
same number of problems the same embedding scheme can
be used. By solving multiple QUBO problems in parallel we
therefore managed to obtain the feature transformation for 20
samples in each annealing cycle. The complete workflow for
the proposed parallel implementation of AQKS is outlined in
algorithm 2.

In the pseudocode of algorithm 2 it was assumed that the
number of training sample /N was a multiple of the number of
samples processed in each annealing cycle, samples_per_run.
If this is not the case, i.e N = p x samples_per_run +
r,withp,r € N and 0 < r < samples_per_run, the
algorithm will run with num_iteration = p + 1: the first
p iterations will follow the procedure described by algorithm
2, while the last one will iterate the for loop over the variable
n over 1,...,r instead of 1,..., samples_per_run.

VI. EXPERIMENTAL VALIDATION
A. Datasets

The experimental validation in this work has been carried
out on 2 real RS dataset related to water chlorophyll concen-
tration. [34]

« SEABAM [35] (SeaWiFS Bio-optical Algorithm Mini-
Workshop) The first dataset used contains 919 in-situ
measurements of chlotophyll concentration in water taken
from several locations in U.S. and Europe. However, due
to some missing data value only 793 samples were used in

Algorithm 2 Proposed implementation parallel AQKS imple-
mentation

Input: training samples {xi,...,xx}, probability distribu-
tions p(A), p(b), E, g, number of samples to run in each
annealing cycle samples_per_run

sample Aj,...,Ag and by,...,bg from p(A) and p(b),
respectively.

define num_iterations & N /samples_per_run

for i = 1,..., num_iterations do
initialize @); as an empty QUBO problem

for n =1,...,samples_per_run do

define ¢ £ samples_per_runx (i — 1) +n
fore=1,...,FE do

calculate random vector h = A.x. + b,
add to the QUBO (@Q; the
ables ABxqx(n—1)+(e—1)%q+1s- - >

aE*q*(nf 1)+(e—1)*g+q
set the linear

vari-

coefficients for
{aE*q*(TL—1)+(e—l)*q+la ceey
aE*q*(n—1)+(e—1)*q+q} as hg,la .
respectively

set the the
QExgi(n—1)+(e—1)xq+j, Brgr(n—1)+(e—1)xq+k
as

hg ;he, fork,j € {1,...,q}

.., he

c,q°

quadratic coefficients

end

end

Run the annealing evolution on the problem @Q;

Perform the measurement process and average among the
different sample readouts provided by the annealer
Normalize the obtained vector z of
samples_per_run * E x ¢ vector by a factor 1/E
Obtain the transformed feature vectors for samples (i—1)x
samples_per_run+1,..., (i — 1) x samples_per_run +
samples_per_run

by considering the elements of z { Ex(I—1)xg+1,..., Ex
lxq} withl e {l,..., samples_per_run}

size

end

the experiments. The measurements were carried out with
the Sea-viewing Wide Field-of- view Sensor (SeaWiFS)
at 5 different wavelengths (412, 443, 490, 510 and 555
nm) and the chlorophyll concentration takes values in the
range 0.019 and 32.787 mg/m?>.

« NOMAD [36] (NASA bio-Optical Marine Algorithm
Data set) The second dataset used is also an in-situ
dataset and contains several bioptical data information
such as surface irradiances, water-leaving radiances, dif-
fuse downwelling attenuation coefficients and chlorophyll
concentration values. In this work data taken at 5 different
wavelengths (411, 443, 489, 510, and 555 nm) were used
as input features vectors for the regression algorithms.
Specifically, for each spectral band the corresponding
feature value was taken as the ratio between the corre-
sponding spectral water-leaving radiance and the spectral
surface irradiance [2]. For the experimental part of this
work a total of 1210 measurements were used and the

chlorophyll concentration value ranged between 0.017
and 70.21 mg/m3

For the training phase in both datasets the values of both
the feature vector and the target value were converted to the
logarithmic domain. The reason for this is that the values of
the bio-physical quantities were assumed to be log-normally
distributed [37].

B. Implementation details

For each dataset the 2 regression methods (SVR, GPR)
implemented with the parallel AQKS kernel approximation
were tested on 10 different randomly sampled training and
test sets of size 200 each. On each of these run a classical
implementation of the regression algorithm using a RBF kernel
and a RKS kernel approximation were tested and their results
in terms of R2 score and Mean Squared Error (MSE) were
compared as a benchmark. The results achieved in terms of
R2 score and MSE by the 3 different kernel implementation
were then compared.

In each run the hyperparameters of the regression algorithms
were tuned by running a exhaustive grid search defined over
a discrete hyperparameter space on a 5-fold validation on the
training set. Specifically, the training set has been divided in 5
different subsets(folds) and each hyperparameter configuration
was tested on each fold after being trained on the remaining
4 other. The configuration that achieved the highest average
R2 score over the 5 different folds was selected. Since the
parameters of parallel AQKS kernel approximation were not
optimized empirically because of the computational burden, it
was not performed an optimization of the kernel parameter ~y
for the classical and RKS-based algorithm. Such value was
set to 1 for the SVR and 2 for the GPR in the classical
case, whereas it was set to 1 for both SVR and GPR in the
RKS implementation. The number of components in the RKS
algorithm was set to 50. All the classical algorithms have been
implemented using the python library scikit-learn [38]. The
hyperparameter spaces for the learning algorithms were:

e« SVR: C: 278,277,276 275 974 9=39-2 9-1 1
2,22,23 24 25 26 27 28] ¢:[1073,1072,107}]

« GPR : noise parameter B:
[10719/1072,1078,1077,107%,1075,107%,1072,1072]

As indicated in section VI-A the training phase has been
conducted by considering the logarithm values of both the
input vector and the target value. The trained prediction func-
tion then provided a target value estimation in the logarithmic
domain. For the evaluation of the chosen performance metrics
two different setting were considered: in the first one, the
comparison between the predicted and the actual values was
carried out by comparing the value provided by the prediction
function and the logarithm of the target value, whereas in the
second setting the evaluation was conducted by considering the
original target value and the prediction value in the original
domain (obtained by exponentiation). In the following these 2
settings will be referred to as logarithm setting and original
setting, respectively.

VII. RESULTS

The results on the NOMAD dataset in the logarithm and
original setting are reported in tables I and II, respectively.
Tables IIT and IV show the results for the SEABAM dataset
(logarithm and original setting, respectively). In the logarithm
domain the 3 kernel implementations performed similarly
in terms of R2 score and MSE on both datasets with the
classical GPR implementation obtaining sligthly better results
overall. Interesting insights can be considered by analizing
the results in the original domain: for the NOMAD dataset
the parallel AQKS implementation achieved the best average
results on both R2 score and MSE. In the SEABAM dataset
the situation was more diverse: the classical SVR imple-
mentation achieved the best R2 score, whereas the classical
GPR obtained the worst performances on the same evaluation
metric. The parallel AQKS GPR performed slightly better
than RKS implementation while for the SVR the latter kernel
approximation method performed slightly better. Regarding
the MSE the results were also similar with the classical SVR
and GPR obtaining the best and worst results, respectively.
It is also worth noting that the proposed parallel AQKS
implementation never obtained a negative value for the R2
score across the various experimental runs, while the RKS-
based implementation obtained a negative score once with
GPR algorithm (experimental run 9 on the SEABAM in the
original setting) and the classical GPR twice (experimental run
7 for the SEABAM and experimental run 8 for the NOMAD,
both in the original setting). Another interesting fact can be
observed by analyzing the best R2 score achieved across
the various experimental runs. In the original setting for the
SEABAM dataset both the RKS-based and classical algorithm
always obtained a higher best R2 across the different runs with
respect to the AQKS even when the AQKS achieved a higher
average score. This fact might indicate a better robustness
of the AQKS in terms of generalization with respect to new
dataset sampling, however further research is needed to verify
this hypothesis.

VIII. CONCLUSIONS

The objective of this work was to develop a AQKS kernel
approximation implementation on a quantum annealer using
parallel quantum annealing for regression applications. The
choice of using a parallel implementation was motivated by
the high number of QUBO problems that are needed in the
workflow. The proposed implementation managed to achieve
results comparable to those obtained by classical kernel meth-
ods and the traditional RKS kernel approximation algorithm,
which could be indicative of its potential. The maximum
number of samples obtained on each annealing cycle, given
the number of epochs E and the number of qubits q, is
limited by the size of the quantum hardware. In our work
we managed to obtain 20 transformed feature vectors in each
annealing cycle, which makes the process unfeasible for large
datsets. The problem graph for the parallel annealing, since is
composed of many independent smaller subgraphs, is sparsely
connected and therefore might scale well with a increased
availability of physical qubits in future quantum annealing

hardware. Further research could also be conducted to improve
upon the proposed implementation. For instance, the samples
that are selected on each annealing cycle were chosen in a
sequential approach based on their sample index in the dataset,
further research could investigate a way to select the samples
to be considered in the same annealing cycle to increase the
performances. The code associated with this work can be
found at this GitHub repository?

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the project
JUNIQ that has received funding from the German Federal
Ministry of Education and Research (BMBF) and the Ministry
of Culture and Science of the State of North Rhine-Westphalia.
This work is co-financed by the EUROCC2 project funded
by the European High-Performance Computing Joint Under-
taking (JU) and EU/EEA states under grant agreement No
101101903. This work is also part of the Center of Excellence
(CoE) Research on AI- and Simulation-Based Engineering
at Exascale (RAISE) receiving funding from EU’s Horizon
2020 Research and Innovation Framework Programme H2020-
INFRAEDI-2019-1 under grant agreement no. 951733.

REFERENCES

[1] Y. Bazi and F. Melgani, “Semisupervised pso-svm regression for bio-
physical parameter estimation,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 6, pp. 1887-1895, 2007.

[2] Y. Bazi, N. Alajlan, and F. Melgani, “Improved estimation of water
chlorophyll concentration with semisupervised gaussian process regres-
sion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50,
no. 7, pp. 2733-2743, 2012.

[3] H. Zhan, P. Shi, and C. Chen, “Retrieval of oceanic chlorophyll
concentration using support vector machines,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 41, no. 12, pp. 2947-2951, 2003.

[4] F. DelFrate, A. Ortenzi, S. Casadio, and C. Zehner, “Application of
neural algorithms for a real time estimation of ozone profiles from
gome measurements,” in IGARSS 2001. Scanning the Present and
Resolving the Future. Proceedings. IEEE 2001 International Geoscience
and Remote Sensing Symposium (Cat. No.01CH37217), vol. 6, 2001, pp.
2668-2670 vol.6.

[5] H. Aghighi, M. Azadbakht, D. Ashourloo, H. S. Shahrabi, and S. Ra-
diom, “Machine learning regression techniques for the silage maize yield
prediction using time-series images of landsat 8 oli,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 11, no. 12, pp. 4563-4577, 2018.

[6] Y. Bazi and F. Melgani, “Semisupervised pso-svm regression for bio-
physical parameter estimation,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 6, pp. 1887-1895, 2007.

[71 X. Wang, L. Ma, and X. Wang, “Apply semi-supervised support vector
regression for remote sensing water quality retrieving,” in 2010 IEEE
International Geoscience and Remote Sensing Symposium, 2010, pp.
2757-2760.

[8] A. Rabe, S. van der Linden, and P. Hostert, “Simplifying support vector
machines for regression analysis of hyperspectral imagery,” in 2009 First
Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing, 2009, pp. 1-4.

[91 G. Mateo-Garcia, V. Laparra, and L. Gémez-Chova, “Optimizing kernel
ridge regression for remote sensing problems,” in /IGARSS 2018 - 2018
IEEE International Geoscience and Remote Sensing Symposium, 2018,
pp. 4007-4010.

[10] Y. Bazi, N. Alajlan, F. Melgani, H. AlHichri, and R. R. Yager, “Robust
estimation of water chlorophyll concentrations with gaussian process
regression and iowa aggregation operators,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 7,
pp. 3019-3028, 2014.

2 GitHub repository: https://gitlab.jsc.fz-juelich.de/sdlrs/
quantum-kernel-estimation-parallel-random-kitchen-sinks

TABLE I
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE NOMAD DATASET. THE EXPERIMENTAL
RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD

FONT
R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.8547 0.8464 0.8661 0.8326 0.8889 0.9171 0.4041 0.4271 0.3724 0.4655 0.3089 0.2306

2 0.8467 0.8653 0.8556 0.9031 0.8666 0.8966 0.4747 0.4171 0.447 0.3001 0.4131 0.3202

3 0.8522 0.8305 0.865 0.8488 0.8512 0.8774 0.3625 0.4159 0.3312 0.371 0.3651 0.3009

4 0.8351 0.8157 0.8628 0.845 0.8373 0.8282 0.4019 0.4489 0.3343 0.3776 0.3964 0.4185

5 0.8183 0.8362 0.8278 0.834 0.86 0.8782 0.4801 0.4328 0.455 0.4387 0.3699 0.3218

6 0.841 0.8319 0.8296 0.8181 0.8331 0.8703 0.3978 0.4208 0.4263 0.4552 0.4176 0.3245

7 0.8752 0.8642 0.8594 0.8703 0.8503 0.8785 0.3892 0.4235 0.4385 0.4045 0.4671 0.3789

8 0.8496 0.8676 0.8668 0.8863 0.8852 0.8958 0.3942 0.347 0.3492 0.298 0.301 0.2731

9 0.8214 0.8388 0.8421 0.8718 0.844 0.8729 0.4865 0.439 0.4302 0.3493 0.4251 0.3462

10 0.8519 0.8605 0.8646 0.8316 0.8709 0.8904 0.4182 0.394 0.3824 0.4755 0.3646 0.3095
Average 0.84461 | 0.84571 | 0.85398 | 0.85416 | 0.85875 | 0.88054 | 0.42092 | 0.41661 | 0.39665 | 0.39354 | 0.38288 | 0.32242
Standard deviation 0.0158 0.017 0.0144 0.0261 0.0181 0.022 0.0412 0.0271 0.0457 0.062 0.0492 0.0495

TABLE II

RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE NOMAD DATASET.THE EXPERIMENTAL RUNS
IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD FONT

R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.4694 0.573 0.3067 0.3723 0.3445 0.7877 | 29.7181 23917 38.8359 | 35.1613 | 36.7163 | 11.8921
2 0.3639 0.4158 0.2223 0.4802 0.3065 0.4924 | 43.6422 | 40.0798 | 53.3583 | 35.6625 | 47.5796 | 34.8237
3 0.5114 0.6572 0.5939 0.6234 0.4595 0.6185 12.4689 | 8.74798 | 10.3644 | 9.6101 13.7923 9.7345
4 0.4678 0.484 0.4515 0.5191 0.3411 0.1149 | 6.18735 | 5.99895 6.3763 5.5906 7.6599 10.2898
5 0.5856 0.6621 0.3673 0.2915 0.3698 0.5653 21.9323 | 17.8812 | 33.4848 | 37.4971 | 33.3539 | 23.0084
6 0.5017 0.5769 0.413 0.4977 0.3062 0.662 15.7916 | 13.4079 | 18.6024 | 159181 | 21.9866 | 10.7112
7 0.6584 0.7147 0.4417 0.5533 0.3103 0.6537 | 20.0019 | 16.7071 | 32.6923 26.16 40.3864 | 20.2803
8 0.65 0.6482 0.5827 0.731 0.6066 -0.0895 | 14.9709 | 15.0517 | 17.8522 | 11.5096 | 16.8273 | 46.6078
9 0.2984 0.4916 0.3528 0.3116 0.1953 0.3427 369161 | 26.7502 | 34.0534 | 36.2232 | 42.3389 | 34.5869
10 0.5722 0.6509 0.5917 0.5946 0.6025 0.7002 | 20.7195 | 16.9072 | 19.7742 | 19.6351 | 19.2548 | 14.5187
Average 0.50788 | 0.58744 | 0.43236 | 0.49747 | 0.38423 | 0.48479 | 22.2349 | 18.5449 | 26.5394 | 23.2968 | 27.9896 | 21.6453
Standard deviation | 0.1099 0.0917 0.1206 0.1328 0.1264 0.2663 10.8828 9.265 13.6581 | 11.7399 | 13.0387 | 12.2649

TABLE III

RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE LOGARITHM SETTING FOR THE SEABAM DATASET. THE EXPERIMENTAL
RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD

FONT
R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR

1 0.8984 0.8887 0.9091 0.9034 | 0.912 0.9131 0.1987 0.2178 0.1777 0.189 0.1721 0.17

2 0.9039 0.8942 0.91 0.9107 | 09172 | 0.9249 0.2188 0.2408 0.2049 0.2033 0.1886 0.171
3 0.888 0.8953 0.8849 | 0.8877 | 0.8901 0.8967 0.2575 0.2409 0.2648 0.2582 0.2527 0.2376
4 0.8975 0.8922 0.8732 | 0.8346 | 0.8462 | 0.8594 0.2184 0.2296 0.2701 0.3522 0.3275 0.2994
5 0.8788 0.8818 0.8429 | 0.8163 | 0.8782 | 0.8989 0.2488 0.2426 0.3225 0.3771 0.2501 0.2076

6 0.888 0.8857 0.8826 | 0.8986 | 0.9204 | 0.9227 0.2289 0.2336 0.2399 0.2072 0.1627 0.158
7 0.8744 0.8677 0.8858 0.888 0.8897 0.8861 0.2367 0.2493 0.2151 0.211 0.2079 0.2146
8 0.8903 0.8775 0.8982 0.898 0.9065 0.9082 0.2062 0.2302 0.1914 0.1917 0.1758 0.1726
9 0.8551 0.8918 0.9019 | 0.8244 | 0.8974 | 0.8958 0.3369 0.2516 0.2281 0.4083 0.2385 0.2423
10 0.8829 0.8676 0.877 0.8653 | 0.8403 0.8787 0.2453 0.2773 0.2578 0.2823 0.3347 0.2542
Average 0.88573 | 0.88425 | 0.88656 | 0.8727 | 0.8898 | 0.89845 | 0.23962 | 0.24137 | 0.23723 | 0.26803 | 0.23106 | 0.21273
Standard deviation | 0.0134 0.0098 0.019 0.0334 | 0.0265 0.0192 0.037 0.0153 0.041 0.0788 0.0587 0.0435

TABLE IV
RESULTS ACHIEVED BY THE DIFFERENT KERNEL IMPLEMENTATIONS IN THE ORIGINAL SETTING FOR THE SEABAM DATASET. THE EXPERIMENTAL
RUNS IN WHICH THE AQKS IMPLEMENTATION ACHIEVED BETTER RESULTS THAN THE CLASSICAL IMPLEMENTATIONS ARE HIGHLIGHTED WITH A BOLD

FONT
R2 MSE
AQKS RKS Classical AQKS RKS Classical

Experimental run SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR SVR GPR
1 0.6114 0.5644 | 0.8979 | 0.6583 0.7952 0.7682 | 2.54541 | 2.85357 | 0.6687 22384 1.34169 | 1.51868
2 0.412 0.4377 | 0.6727 0.8462 0.7979 0.8619 6.5645 6.2784 | 3.6544 1.7172 | 2.25637 | 1.54226

3 0.4354 0.5463 | 0.3898 0.4376 0.4121 04186 | 6.29623 | 5.05951 | 6.8051 6.2719 | 6.55649 | 6.4839
4 0.4112 0.3947 | 0.2751 0.171 0.1877 0.1918 6.69937 | 6.88736 | 8.2478 9.4322 9.2416 | 9.19557
5 0.522 0.5035 | 0.4217 0.5436 0.6415 0.7067 3.09488 | 3.21482 | 3.7441 2.9551 2.32111 | 1.89872
6 0.3853 0.4166 | 0.3496 | 0.4317 0.5207 0.6046 | 8.14113 | 7.72548 | 8.6132 | 7.5255 6.34713 | 5.23573
7 0.2644 0.288 0.343 0.5419 0.3899 -2.1175 | 8.40368 | 8.13365 7.505 5.2329 | 6.96937 | 35.6133
8 0.5801 0.6298 | 0.7599 | 0.6463 0.7777 0.6915 1.90872 | 1.68274 | 1.0914 1.608 1.01051 | 1.40248
9 0.5479 0.542 0.5044 | -0.3097 0.5025 0.6241 3.95809 | 4.01001 | 4.3391 | 11.4678 | 4.35617 | 3.29168
10 0.6027 0.6699 | 0.6949 | 0.6659 0.709 0.4923 1.67502 1.3919 1.2862 1.4084 1.22674 | 2.14073
Average 0.47724 | 0.49929 | 0.5309 | 0.46328 | 0.57342 | 0.32422 | 4.9287 | 4.72374 | 4.5955 | 4.98574 | 4.16272 | 6.83231
Standard deviation | 0.1074 0.1098 | 0.2001 0.3093 0.1951 0.8338 2.4448 2.3341 2.8837 3.4134 2.7884 9.9055

[11] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, Earth Observations and Remote Sensing, vol. 15, pp. 565-580, 2022.
2006. [26] S. Otgonbaatar and M. Datcu, “Classification of Remote Sensing Images

[12] K. P. Murphy, Machine learning : a probabilistic with Parameterized Quantum Gates,” IEEE Geoscience and Remote
perspective. Cambridge, Mass. [u.a.]: MIT Press, Sensing Letters, vol. 19, 2022.

2013. [Online]. Available: https://www.amazon.com/ [27] P. Gawron and S. Lewinski, “Multi-Spectral Image Classification with
Machine-Learning-Probabilistic-Perspective- Computation/dp/ Quantum Neural Network,” in IGARSS 2020 - 2020 IEEE International
0262018020/ref=sr_1_2?%1e=UTF8&qid=1336857747 &sr=8-2 Geoscience and Remote Sensing Symposium, 2020, pp. 3513-3516.

[13] A. Rahimi and B. Recht, “Random features for large-scale kernel [28] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, A. M.
machines,” in Proceedings of the 20th International Conference on Polloreno, P. J. Karalekas, S. Heidel, M. S. Alam, G. E. Crooks, and
Neural Information Processing Systems, ser. NIPS’07. Red Hook, NY, M. P. da Silva, “Quantum kitchen sinks: An algorithm for machine
USA: Curran Associates Inc., 2007, p. 1177-1184. learning on near-term quantum computers,” 2018. [Online]. Available:

[14] ——, “Uniform approximation of functions with random bases,” in https://arxiv.org/abs/1806.08321
2008 46th Annual Allerton Conference on Communication, Control, and ~ [29] M. Noori, S. S. Vedaie, I. Singh, D. Crawford, J. S. Oberoi, B. C.
Computing, 2008, pp. 555-561. Sanders, and E. Zahedinejad, “Analog-quantum feature mapping for

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum machine-learning applications,” Physical Review Applied, vol. 14, no. 3,
Information: 10th Anniversary Edition. Cambridge University Press, Sep. 2020. [Online]. Available: https://doi.org/10.1103/physrevapplied.
Dec. 2010. 14.034034

[16] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum [30] E. Pelofske, G. Hahn, and H. N. Djidjev, “Parallel quantum annealing,”
Information, vol. 2, no. 1, Jan. 2016. [Online]. Available: https: Scientific Reports, vol. 12, no. 1, mar 2022. [Online]. Available:
//doi.org/10.1038/npjqi.2015.23 https://doi.org/10.1038%2Fs41598-022-08394-8

[17] P. Shor, “Algorithms for quantum computation: discrete logarithms and ~ [31] F. Barahona, “On the computational complexity of ising spin
factoring,” in Proceedings 35th Annual Symposium on Foundations of glass models,” Journal of Physics A: Mathematical and General,
Computer Science, 1994, pp. 124-134. vol. 15, no. 10, pp. 3241-3253, oct 1982. [Online]. Available:

[18] L. K. Grover, “A fast quantum mechanical algorithm for database https://doi.org/10.1088/0305-4470/15/10/028
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium [32] V. N. Vapnik, The Nature of Statistical Learning Theory.
on Theory of Computing, ser. STOC ’96. New York, NY, USA: Springer New York, 2000. [Online]. Available: https://doi.org/10.
Association for Computing Machinery, 1996, p. 212-219. [Online]. 1007/978-1-4757-3264-1
Available: https://doi.org/10.1145/237814.237866 [33] V. Choi, “Minor-Embedding in Adiabatic Quantum Computation: L.

[19] J. Preskill, “Quantum computing in the NISQ era and beyond,” The Parameter Setting Problem,” Quantum Information Processing,
Quantum, vol. 2, p. 79, aug 2018. [Online]. Available: https: vol. 7, pp. 193-209, 4 2008. [Online]. Available: https://arxiv.org/abs/
/ldoi.org/10.22331\ %2Fq-2018-08-06-79 0804.4884v1

[20] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and [34] D. Pastorello, Concise Guide to Quantum Machine Learning. Springer
S. Lloyd, “Quantum Machine Learning,” Nature, vol. 549, no. 7671, Nature Singapore, 2023. [Online]. Available: https://doi.org/10.1007/
pp. 195-202, 2017. 978-981-19-6897-6

[21] N. Mishra, M. Kapil, H. Rakesh, A. Anand, N. Mishra, A. Warke, [35] J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder,
S. Sarkar, S. Dutta, S. Gupta, A. Dash, R. Gharat, Y. Chatterjee, S. Roy, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll
S. Raj, V. Jain, S. Bagaria, S. Chaudhary, V. Singh, R. Maji, and algorithms for seawifs,” Journal of Geophysical Research: Oceans,
P. Panigrahi, Quantum Machine Learning: A Review and Current Status, vol. 103, no. Cl1, pp. 24937-24953, 1998. [Online]. Available:
01 2021, pp. 101-145. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC02160

[22] M. Schuld and FE. Petruccione, “Quantum machine learning,” in [36] P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data
Encyclopedia of Machine Learning and Data Mining. Springer set for ocean color algorithm development and satellite data product
US, 2017, pp. 1034-1043. [Online]. Available: https://doi.org/10.1007/ validation,” Remote Sensing of Environment, vol. 98, pp. 122—140, 2005.
978-1-4899-7687-1_913 [37] J. W. Campbell, “The lognormal distribution as a model for the bio-

[23] V. Dunjko and H. J. Briegel, “Machine Learning and Artificial optical versatility of the sea,” J. Geophys. Res., vol. 100, pp. 13237-
Intelligence in the Quantum Domain: a Review of Recent Progress,” 13254, 1995.

Reports on Progress in Physics, vol. 81, no. 7, p. 074001, jun 2018. [38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

[24]

[25]

[Online]. Available: https://dx.doi.org/10.1088/1361-6633/aab406

M. Schuld and N. Killoran, “Quantum Machine Learning in Feature
Hilbert Spaces,” Physical Review Letters, vol. 122, no. 4, Feb 2019.
A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B. L. Saux, and S. L. Ullo,
“On circuit-based hybrid quantum neural networks for remote sensing
imagery classification,” IEEE Journal of Selected Topics in Applied

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

Edoardo Pasetto received the B.Sc degree and
M.Sc.degree in Information and Communication En-
gineering from the university of Trento in 2019 and
2021, respectively. He is currently doing a PhD
at Forschungszentrum Jillich and RWTH Aachen
university. His main research interest is the applica-
tion of hybrid quantum-classical Machine Learning
frameworks to RS applications.

Morris Riedel (Member, IEEE) received his PhD
from the Karlsruhe Institute of Technology (KIT)
and worked in data-intensive parallel and distributed
systems since 2004. He is currently a Full Professor
of High-Performance Computing with an empha-
sis on Parallel and Scalable Machine Learning at
the School of Natural Sciences and Engineering of
the University of Iceland. Since 2004, Prof. Dr. -
Ing. Morris Riedel held various positions at the
Juelich Supercomputing Centre of Forschungszen-
trum Juelich in Germany. In addition, he is the Head
of the joint High Productivity Data Processing research group between the
Juelich Supercomputing Centre and the University of Iceland. Since 2020,
he is also the EuroHPC Joint Undertaking governing board member for
Iceland. His research interests include high-performance computing, remote
sensing applications, medicine and health applications, pattern recognition,
image processing, and data sciences, and he has authored extensively in those
fields. Prof. Dr. — Ing. Morris Riedel online YouTube and university lectures
include High-Performance Computing — Advanced Scientific Computing,
Cloud Computing and Big Data — Parallel and Scalable Machine and Deep
Learning, as well as Statistical Data Mining. In addition, he has performed
numerous hands-on training events in parallel and scalable machine and deep
learning techniques on cutting-edge HPC systems.

Kristel Michielsen received her PhD from the
University of Groningen, the Netherlands, for work
on the simulation of strongly correlated electron
systems in 1993. Since 2009 she is group leader
of the research group Quantum Information Pro-
cessing at the Jiilich Supercomputing Centre (JSC),
Forschungszentrum Jiilich (Germany) and Profes-
sor of Quantum Information Processing at RWTH
Aachen University (Germany). Kristel Michielsen
and her group have ample experience in performing
large-scale simulations of quantum systems. With
her group and a team of international collaborators, she set the world record in
simulating a quantum computer with 48 qubits. In 2019, she participated in a
research collaboration that proved Google’s quantum supremacy. She is lead-
ing and building up the Jiilich UNified Infrastructure for Quantum computing
(JUNIQ) at the JSC. Her research interests range from classical simulations
of electrodynamics and quantum mechanics to quantum computing, quantum
computing architectures, quantum algorithms, quantum benchmarking and
modular quantum-HPC hybrid computing.

Gabriele Cavallaro (Senior Member, IEEE) re-
ceived his B.Sc. and M.Sc. degrees in Telecommuni-
cations Engineering from the University of Trento,
Italy, in 2011 and 2013, respectively, and a Ph.D.
degree in Electrical and Computer Engineering from
the University of Iceland, Iceland, in 2016. From
2016 to 2021 he has been the deputy head of
the “High Productivity Data Processing” (HPDP)
research group at the Jiilich Supercomputing Centre
(JSC), Forschungszentrum Jiilich, Germany. Since
2022, he is the Head of the “Al and ML for Remote
Sensing” Simulation and Data Lab at the JSC and an Adjunct Associate
Professor with the School of Natural Sciences and Engineering, University
of Iceland, Iceland. From 2020 to 2023, he held the position of Chair for the
High-Performance and Disruptive Computing in Remote Sensing (HDCRS)
Working Group under the IEEE GRSS Earth Science Informatics Technical
Committee (ESI TC). In 2023, he took on the role of Co-chair for the EST TC.
Concurrently, he serves as Visiting Professor at the ®-lab within the European
Space Agency (ESA), where he contributes to the Quantum Computing for
Earth Observation (QC4EO) initiative. Additionally, he has been serving as
an Associate Editor for the IEEE Transactions on Image Processing (TIP)
since October 2022. He was the recipient of the IEEE GRSS Third Prize
in the Student Paper Competition of the IEEE International Geoscience and
Remote Sensing Symposium (IGARSS) 2015 (Milan - Italy). His research
interests cover remote sensing data processing with parallel machine learning
algorithms that scale on distributed computing systems and cutting-edge
computing technologies, including quantum computers.

o
—

